3.2100 \(\int (d+e x)^{-1-2 p} (a d e+(c d^2+a e^2) x+c d e x^2)^p \, dx\)

Optimal. Leaf size=107 \[ -\frac {(d+e x)^{-2 p} \left (-\frac {e (a e+c d x)}{c d^2-a e^2}\right )^{-p} \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^p \, _2F_1\left (-p,-p;1-p;\frac {c d (d+e x)}{c d^2-a e^2}\right )}{e p} \]

[Out]

-(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^p*hypergeom([-p, -p],[1-p],c*d*(e*x+d)/(-a*e^2+c*d^2))/e/p/((-e*(c*d*x+a*e)
/(-a*e^2+c*d^2))^p)/((e*x+d)^(2*p))

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {679, 677, 70, 69} \[ -\frac {(d+e x)^{-2 p} \left (-\frac {e (a e+c d x)}{c d^2-a e^2}\right )^{-p} \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^p \, _2F_1\left (-p,-p;1-p;\frac {c d (d+e x)}{c d^2-a e^2}\right )}{e p} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(-1 - 2*p)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^p,x]

[Out]

-(((a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^p*Hypergeometric2F1[-p, -p, 1 - p, (c*d*(d + e*x))/(c*d^2 - a*e^2)]
)/(e*p*(-((e*(a*e + c*d*x))/(c*d^2 - a*e^2)))^p*(d + e*x)^(2*p)))

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*Simp[(b*c)/(b*c - a*d) + (b*d*x)/(b*c -
 a*d), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 677

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(d^m*(a + b*x + c*x^2
)^FracPart[p])/((1 + (e*x)/d)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p]), Int[(1 + (e*x)/d)^(m + p)*(a/d + (c*x)
/e)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Int
egerQ[p] && (IntegerQ[m] || GtQ[d, 0]) &&  !(IGtQ[m, 0] && (IntegerQ[3*p] || IntegerQ[4*p]))

Rule 679

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(d^IntPart[m]*(d + e*
x)^FracPart[m])/(1 + (e*x)/d)^FracPart[m], Int[(1 + (e*x)/d)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c,
d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] || GtQ
[d, 0])

Rubi steps

\begin {align*} \int (d+e x)^{-1-2 p} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^p \, dx &=\frac {\left ((d+e x)^{-2 p} \left (1+\frac {e x}{d}\right )^{2 p}\right ) \int \left (1+\frac {e x}{d}\right )^{-1-2 p} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^p \, dx}{d}\\ &=\frac {\left (\left (a d e+c d^2 x\right )^{-p} (d+e x)^{-2 p} \left (1+\frac {e x}{d}\right )^p \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^p\right ) \int \left (a d e+c d^2 x\right )^p \left (1+\frac {e x}{d}\right )^{-1-p} \, dx}{d}\\ &=\frac {\left (\left (\frac {e \left (a d e+c d^2 x\right )}{d \left (-c d^2+a e^2\right )}\right )^{-p} (d+e x)^{-2 p} \left (1+\frac {e x}{d}\right )^p \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^p\right ) \int \left (1+\frac {e x}{d}\right )^{-1-p} \left (-\frac {a e^2}{c d^2-a e^2}-\frac {c d e x}{c d^2-a e^2}\right )^p \, dx}{d}\\ &=-\frac {\left (-\frac {e (a e+c d x)}{c d^2-a e^2}\right )^{-p} (d+e x)^{-2 p} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^p \, _2F_1\left (-p,-p;1-p;\frac {c d (d+e x)}{c d^2-a e^2}\right )}{e p}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 95, normalized size = 0.89 \[ -\frac {(d+e x)^{-2 p} \left (\frac {e (a e+c d x)}{a e^2-c d^2}\right )^{-p} ((d+e x) (a e+c d x))^p \, _2F_1\left (-p,-p;1-p;\frac {c d (d+e x)}{c d^2-a e^2}\right )}{e p} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(-1 - 2*p)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^p,x]

[Out]

-((((a*e + c*d*x)*(d + e*x))^p*Hypergeometric2F1[-p, -p, 1 - p, (c*d*(d + e*x))/(c*d^2 - a*e^2)])/(e*p*((e*(a*
e + c*d*x))/(-(c*d^2) + a*e^2))^p*(d + e*x)^(2*p)))

________________________________________________________________________________________

fricas [F]  time = 0.87, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{p} {\left (e x + d\right )}^{-2 \, p - 1}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(-1-2*p)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^p,x, algorithm="fricas")

[Out]

integral((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^p*(e*x + d)^(-2*p - 1), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{p} {\left (e x + d\right )}^{-2 \, p - 1}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(-1-2*p)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^p,x, algorithm="giac")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^p*(e*x + d)^(-2*p - 1), x)

________________________________________________________________________________________

maple [F]  time = 1.66, size = 0, normalized size = 0.00 \[ \int \left (c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x \right )^{p} \left (e x +d \right )^{-2 p -1}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(-2*p-1)*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^p,x)

[Out]

int((e*x+d)^(-2*p-1)*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^p,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{p} {\left (e x + d\right )}^{-2 \, p - 1}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(-1-2*p)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^p,x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^p*(e*x + d)^(-2*p - 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^p}{{\left (d+e\,x\right )}^{2\,p+1}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^p/(d + e*x)^(2*p + 1),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^p/(d + e*x)^(2*p + 1), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(-1-2*p)*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**p,x)

[Out]

Timed out

________________________________________________________________________________________